3,771 research outputs found

    Wilson loops in supersymmetric Chern-Simons-matter theories and duality

    Get PDF
    We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results to propose the mapping of Wilson loops under Seiberg-like dualities and verify that the proposed map agrees with the exact results for expectation values of circular Wilson loops. In some cases we also relate the algebra of Wilson loops to the equivariant quantum K-ring of certain quasi projective varieties. This generalizes the connection between the Verlinde algebra and the quantum cohomology of the Grassmannian found by Witten

    Generalized Superconformal Index for Three Dimensional Field Theories

    Get PDF
    We introduce a generalization of the S^2 x S^1 superconformal index where background gauge fields with magnetic flux are coupled to the global symmetries of the theory. This allows one to gauge a global symmetry at the level of the index, which we use to show the matching of the superconformal index for N=2 SQED with N_f flavors and its mirror dual

    Generalized Global Symmetries

    Get PDF
    A qq-form global symmetry is a global symmetry for which the charged operators are of space-time dimension qq; e.g. Wilson lines, surface defects, etc., and the charged excitations have qq spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (qq=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have 't Hooft anomalies, which prevent us from gauging them, but lead to 't Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.Comment: 49 pages plus appendices. v2: references adde

    Tests of Seiberg-like Dualities in Three Dimensions

    Get PDF
    We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in N = 4 gauge theories realized by monopole operators

    Exact results for supersymmetric abelian vortex loops in 2+1 dimensions

    Get PDF
    We define a class of supersymmetric defect loop operators in N = 2 gauge theories in 2 + 1 dimensions. We give a prescription for computing the expectation value of such operators in a generic N = 2 theory on the three-sphere using localization. We elucidate the role of defect loop operators in IR dualities of supersymmetric gauge theories, and write down their transformation properties under the SL(2, Z ) action on conformal theories with abelian global symmetries

    Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm experiment

    Full text link
    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.Comment: Updated to published versio

    MC2^2: Subaru and Hubble Space Telescope Weak-Lensing Analysis of the Double Radio Relic Galaxy Cluster PLCK G287.0+32.9

    Full text link
    The second most significant detection of the Planck Sunyaev Zel'dovich survey, PLCK~G287.0+32.9 (z=0.385z=0.385) boasts two similarly bright radio relics and a radio halo. One radio relic is located ∼400\sim 400 kpc northwest of the X-ray peak and the other ∼2.8\sim 2.8 Mpc to the southeast. This large difference suggests that a complex merging scenario is required. A key missing puzzle for the merging scenario reconstruction is the underlying dark matter distribution in high resolution. We present a joint Subaru Telescope and {\it Hubble Space Telescope} weak-lensing analysis of the cluster. Our analysis shows that the mass distribution features four significant substructures. Of the substructures, a primary cluster of mass $M_{200\text{c}}=1.59^{+0.25}_{-0.22}\times 10^{15} \ h^{-1}_{70} \ \text{M}_{\odot}dominatestheweak−lensingsignal.Thisclusterislikelytobeundergoingamergerwithone(ormore)subclusterwhosemassisapproximatelyafactorof10lower.Onecandidateisthesubclusterofmass dominates the weak-lensing signal. This cluster is likely to be undergoing a merger with one (or more) subcluster whose mass is approximately a factor of 10 lower. One candidate is the subcluster of mass M_{200\text{c}}=1.16^{+0.15}_{-0.13}\times 10^{14} \ h^{-1}_{70} \ \text{M}_{\odot}located located \sim 400kpctothesoutheast.ThelocationofthissubclustersuggeststhatitsinteractionwiththeprimaryclustercouldbethesourceoftheNWradiorelic.Anothersubclusterisdetected kpc to the southeast. The location of this subcluster suggests that its interaction with the primary cluster could be the source of the NW radio relic. Another subcluster is detected \sim 2MpctotheSEoftheX−raypeakwithmass Mpc to the SE of the X-ray peak with mass M_{200\text{c}}=1.68^{+0.22}_{-0.20}\times 10^{14} \ h^{-1}_{70} \ \text{M}_{\odot}.ThisSEsubclusterisinthevicinityoftheSEradiorelicandmayhavecreatedtheSEradiorelicduringapastmergerwiththeprimarycluster.Thefourthsubcluster,. This SE subcluster is in the vicinity of the SE radio relic and may have created the SE radio relic during a past merger with the primary cluster. The fourth subcluster, M_{200\text{c}}=1.87^{+0.24}_{-0.22}\times 10^{14} \ h^{-1}_{70} \ \text{M}_{\odot}$, is northwest of the X-ray peak and beyond the NW radio relic.Comment: 19 pages, 14 figures; Accepted to Ap

    Phylogenetic detection of conserved gene clusters in microbial genomes

    Get PDF
    BACKGROUND: Microbial genomes contain an abundance of genes with conserved proximity forming clusters on the chromosome. However, the conservation can be a result of many factors such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters that are under functional selection provides an effective channel for gene annotation, microarray screening, and pathway reconstruction. The problem of devising a robust method to identify these conserved gene clusters and to evaluate the significance of the conservation in multiple genomes has a number of implications for comparative, evolutionary and functional genomics as well as synthetic biology. RESULTS: In this paper we describe a new method for detecting conserved gene clusters that incorporates the information captured by a genome phylogenetic tree. We show that our method can overcome the common problem of overestimation of significance due to the bias in the genome database and thereby achieve better accuracy when detecting functionally connected gene clusters. Our results can be accessed at database GeneChords . CONCLUSION: The methodology described in this paper gives a scalable framework for discovering conserved gene clusters in microbial genomes. It serves as a platform for many other functional genomic analyses in microorganisms, such as operon prediction, regulatory site prediction, functional annotation of genes, evolutionary origin and development of gene clusters

    Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria.

    Get PDF
    The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably
    • …
    corecore